Fiber optic network
Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber have been modulated at rates as high as 111 gigabits per second by NTT although 10 or 40 Gb/s is typical in deployed systems. Each fiber can carry many independent channels, each using a different wavelength of light (wavelength-division multiplexing (WDM)). The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the FEC overhead, multiplied by the number of channels (usually up to eighty in commercial dense WDM systems as of 2008). The current laboratory fiber optic data rate record, held by Bell Labs in Villarceaux, France, is multiplexing 155 channels, each carrying 100 Gb/s over a 7000 km fiber.[19] Nippon Telegraph and Telephone Corporation have also managed 69.1 Tb/s over a single 240km fibre (multiplexing 432 channels, equating to 171 Gb/s per channel). Bell Labs also broke a 100 Petabit per second kilometer barrier
Thursday, April 29, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment